84 research outputs found

    Learning-aided Stochastic Network Optimization with Imperfect State Prediction

    Full text link
    We investigate the problem of stochastic network optimization in the presence of imperfect state prediction and non-stationarity. Based on a novel distribution-accuracy curve prediction model, we develop the predictive learning-aided control (PLC) algorithm, which jointly utilizes historic and predicted network state information for decision making. PLC is an online algorithm that requires zero a-prior system statistical information, and consists of three key components, namely sequential distribution estimation and change detection, dual learning, and online queue-based control. Specifically, we show that PLC simultaneously achieves good long-term performance, short-term queue size reduction, accurate change detection, and fast algorithm convergence. In particular, for stationary networks, PLC achieves a near-optimal [O(ϵ)[O(\epsilon), O(log(1/ϵ)2)]O(\log(1/\epsilon)^2)] utility-delay tradeoff. For non-stationary networks, \plc{} obtains an [O(ϵ),O(log2(1/ϵ)[O(\epsilon), O(\log^2(1/\epsilon) +min(ϵc/21,ew/ϵ))]+ \min(\epsilon^{c/2-1}, e_w/\epsilon))] utility-backlog tradeoff for distributions that last Θ(max(ϵc,ew2)ϵ1+a)\Theta(\frac{\max(\epsilon^{-c}, e_w^{-2})}{\epsilon^{1+a}}) time, where ewe_w is the prediction accuracy and a=Θ(1)>0a=\Theta(1)>0 is a constant (the Backpressue algorithm \cite{neelynowbook} requires an O(ϵ2)O(\epsilon^{-2}) length for the same utility performance with a larger backlog). Moreover, PLC detects distribution change O(w)O(w) slots faster with high probability (ww is the prediction size) and achieves an O(min(ϵ1+c/2,ew/ϵ)+log2(1/ϵ))O(\min(\epsilon^{-1+c/2}, e_w/\epsilon)+\log^2(1/\epsilon)) convergence time. Our results demonstrate that state prediction (even imperfect) can help (i) achieve faster detection and convergence, and (ii) obtain better utility-delay tradeoffs

    Disease risk score as a confounder summary method: systematic review and recommendations: DRS AS A CONFOUNDER SUMMARY METHOD

    Get PDF
    To systematically examine trends and applications of the disease risk score (DRS) as a confounder summary method

    Confinement-Induced Transition between Wavelike Collective Cell Migration Modes

    Get PDF
    International audienceThe structural and functional organization of biological tissues relies on the intricate interplay between chemical and mechanical signaling. Whereas the role of constant and transient mechanical perturbations is generally accepted, several studies recently highlighted the existence of longrange mechanical excitations (i.e., waves) at the supracellular level. Here, we confine epithelial cell mono-layers to quasi-one dimensional geometries, to force the establishment of tissue-level waves of well-defined wavelength and period. Numerical simulations based on a self-propelled Voronoi model reproduce the observed waves and exhibit a phase transition between a global and a multi-nodal wave, controlled by the confinement size. We conrm experimentally the existence of such a phasetransition, and show that wavelength and period are independent of the confinement length. Together, these results demonstrate the intrinsic origin of tissue oscillations, which could provide cells with a mechanism to accurately measure distances at the supracellular level

    Toward the clinical application of time-domain fluorescence lifetime imaging

    No full text
    High-speed (video-rate) fluorescence lifetime imaging (FLIM) through a flexible endoscope is reported based on gated optical image intensifier technology. The optimization and potential application of FLIM to tissue autofluorescence for clinical applications are discussed. (c) 2005 Society of Photo-Optical Instrumentation Engineers

    Membrane connectivity estimated by digital image analysis of HER2 immunohistochemistry is concordant with visual scoring and fluorescence in situ hybridization results: algorithm evaluation on breast cancer tissue microarrays

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>The human epidermal growth factor receptor 2 (HER2) is an established biomarker for management of patients with breast cancer. While conventional testing of HER2 protein expression is based on semi-quantitative visual scoring of the immunohistochemistry (IHC) result, efforts to reduce inter-observer variation and to produce continuous estimates of the IHC data are potentiated by digital image analysis technologies.</p> <p>Methods</p> <p>HER2 IHC was performed on the tissue microarrays (TMAs) of 195 patients with an early ductal carcinoma of the breast. Digital images of the IHC slides were obtained by Aperio ScanScope GL Slide Scanner. Membrane connectivity algorithm (HER2-CONNECT™, Visiopharm) was used for digital image analysis (DA). A pathologist evaluated the images on the screen twice (visual evaluations: VE1 and VE2). HER2 fluorescence <it>in situ </it>hybridization (FISH) was performed on the corresponding sections of the TMAs. The agreement between the IHC HER2 scores, obtained by VE1, VE2, and DA was tested for individual TMA spots and patient's maximum TMA spot values (VE1max, VE2max, DAmax). The latter were compared with the FISH data. Correlation of the continuous variable of the membrane connectivity estimate with the FISH data was tested.</p> <p>Results</p> <p>The pathologist intra-observer agreement (VE1 and VE2) on HER2 IHC score was almost perfect: kappa 0.91 (by spot) and 0.88 (by patient). The agreement between visual evaluation and digital image analysis was almost perfect at the spot level (kappa 0.86 and 0.87, with VE1 and VE2 respectively) and at the patient level (kappa 0.80 and 0.86, with VE1max and VE2max, respectively). The DA was more accurate than VE in detection of FISH-positive patients by recruiting 3 or 2 additional FISH-positive patients to the IHC score 2+ category from the IHC 0/1+ category by VE1max or VE2max, respectively. The DA continuous variable of the membrane connectivity correlated with the FISH data (HER2 and CEP17 copy numbers, and HER2/CEP17 ratio).</p> <p>Conclusion</p> <p>HER2 IHC digital image analysis based on membrane connectivity estimate was in almost perfect agreement with the visual evaluation of the pathologist and more accurate in detection of HER2 FISH-positive patients. Most immediate benefit of integrating the DA algorithm into the routine pathology HER2 testing may be obtained by alerting/reassuring pathologists of potentially misinterpreted IHC 0/1+ versus 2+ cases.</p

    Immunohistochemistry profiles of breast ductal carcinoma: factor analysis of digital image analysis data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Molecular studies of breast cancer revealed biological heterogeneity of the disease and opened new perspectives for personalized therapy. While multiple gene expression-based systems have been developed, current clinical practice is largely based upon conventional clinical and pathologic criteria. This gap may be filled by development of combined multi-IHC indices to characterize biological and clinical behaviour of the tumours. Digital image analysis (DA) with multivariate statistics of the data opens new opportunities in this field.</p> <p>Methods</p> <p>Tissue microarrays of 109 patients with breast ductal carcinoma were stained for a set of 10 IHC markers (ER, PR, HER2, Ki67, AR, BCL2, HIF-1α, SATB1, p53, and p16). Aperio imaging platform with the Genie, Nuclear and Membrane algorithms were used for the DA. Factor analysis of the DA data was performed in the whole group and hormone receptor (HR) positive subgroup of the patients (n = 85).</p> <p>Results</p> <p>Major factor potentially reflecting aggressive disease behaviour (i-Grade) was extracted, characterized by opposite loadings of ER/PR/AR/BCL2 and Ki67/HIF-1α. The i-Grade factor scores revealed bimodal distribution and were strongly associated with higher Nottingham histological grade (G) and more aggressive intrinsic subtypes. In HR-positive tumours, the aggressiveness of the tumour was best defined by positive Ki67 and negative ER loadings. High Ki67/ER factor scores were strongly associated with the higher G and Luminal B types, but also were detected in a set of G1 and Luminal A cases, potentially indicating high risk patients in these categories. Inverse relation between HER2 and PR expression was found in the HR-positive tumours pointing at differential information conveyed by the ER and PR expression. SATB1 along with HIF-1α reflected the second major factor of variation in our patients; in the HR-positive group they were inversely associated with the HR and BCL2 expression and represented the major factor of variation. Finally, we confirmed high expression levels of p16 in Triple-negative tumours.</p> <p>Conclusion</p> <p>Factor analysis of multiple IHC biomarkers measured by automated DA is an efficient exploratory tool clarifying complex interdependencies in the breast ductal carcinoma IHC profiles and informative value of single IHC markers. Integrated IHC indices may provide additional risk stratifications for the currently used grading systems and prove to be useful in clinical outcome studies.</p> <p>Virtual Slides</p> <p>The virtual slide(s) for this article can be found here: <url>http://www.diagnosticpathology.diagnomx.eu/vs/1512077125668949</url></p
    corecore